• DocumentCode
    822150
  • Title

    Performance of Bayesian parameter estimators for linear signal models

  • Author

    Hawkes, R.M. ; Moore, J.B.

  • Author_Institution
    University of Newcastle, New South Wales, Australia
  • Volume
    21
  • Issue
    4
  • fYear
    1976
  • fDate
    8/1/1976 12:00:00 AM
  • Firstpage
    523
  • Lastpage
    527
  • Abstract
    In this short paper the Bayesian estimation of parameters of discrete time, linear, finite-dimensional stochastic systems is discussed. Upper bounds for the estimator mean-square error are obtained under the assumption of a finite parameter set. Necessary and sufficient conditions are established for exponential convergence of the Bayesian estimate to the true parameter values in the mean-square error sense for systems with measurements which are stationary Gaussian random processes. The conditions for convergence are given in terms of a finite set of signal model Markov parameters. The performance results for parameter estimation are shown to yield bounds on the performance of the nonlinear state estimators for the class of signal models under discussion.
  • Keywords
    Bayes procedures; Linear systems, stochastic discrete-time; Parameter estimation; Bayesian methods; Convergence; Filtering; Maximum likelihood estimation; Nonlinear filters; Parameter estimation; State estimation; Statistics; Upper bound; Vectors;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1976.1101308
  • Filename
    1101308