DocumentCode :
8239
Title :
Linear minimum-mean-square error estimation of Markovian jump linear systems with Stochastic coefficient matrices
Author :
Yanbo Yang ; Yan Liang ; Quan Pan ; Yuemei Qin ; Feng Yang
Author_Institution :
Sch. of Autom., Northwestern Polytech. Univ., Xi´an, China
Volume :
8
Issue :
12
fYear :
2014
fDate :
August 14 2014
Firstpage :
1112
Lastpage :
1126
Abstract :
This study presents the state estimation problem of discrete-time Markovian jump linear systems with stochastic coefficient matrices which is motivated by the idea of establishing the general filter framework of the joint state estimation and data association in clutters for tracking the manoeuvering target. According to the orthogonality principle, the linear minimum-mean-square error estimator for this system (abbreviated as LMSCE estimator) is derived recursively and sufficient conditions are given for the stability of the LMSCE estimator. The simulation about tracking the manoeuvering target in clutters shows that the LMSCE estimator obtains much more accurate estimate than the well-known interacting multiple model probabilistic data association filter.
Keywords :
Markov processes; discrete time filters; least mean squares methods; linear systems; matrix algebra; recursive estimation; sensor fusion; stability; state estimation; target tracking; LMSCE estimator; clutter; discrete time Markovian jump linear systems; linear minimum mean square error estimation; manoeuvering target tracking; multiple model probabilistic data association filter; orthogonality principle; recursive process; stability; state estimation problem; stochastic coefficient matrix; sufficient condition;
fLanguage :
English
Journal_Title :
Control Theory & Applications, IET
Publisher :
iet
ISSN :
1751-8644
Type :
jour
DOI :
10.1049/iet-cta.2013.0936
Filename :
6869225
Link To Document :
بازگشت