DocumentCode :
824037
Title :
A Novel Algorithm for Detecting Singular Points from Fingerprint Images
Author :
Zhou, Jie ; Chen, Fanglin ; Gu, Jinwei
Author_Institution :
Dept. of Autom., Tsinghua Univ., Beijing
Volume :
31
Issue :
7
fYear :
2009
fDate :
7/1/2009 12:00:00 AM
Firstpage :
1239
Lastpage :
1250
Abstract :
Fingerprint analysis is typically based on the location and pattern of detected singular points in the images. These singular points (cores and deltas) not only represent the characteristics of local ridge patterns but also determine the topological structure (i.e., fingerprint type) and largely influence the orientation field. In this paper, we propose a novel algorithm for singular points detection. After an initial detection using the conventional poincare index method, a so-called DORIC feature is used to remove spurious singular points. Then, the optimal combination of singular points is selected to minimize the difference between the original orientation field and the model-based orientation field reconstructed using the singular points. A core-delta relation is used as a global constraint for the final selection of singular points. Experimental results show that our algorithm is accurate and robust, giving better results than competing approaches. The proposed detection algorithm can also be used for more general 2D oriented patterns, such as fluid flow motion, and so forth.
Keywords :
fingerprint identification; object detection; DORIC feature; fingerprint analysis; poincare index method; singular points detection; Feature evaluation and selection; Image Processing and Computer Vision; Poincaré Index; Singular points; orientation field.; topological structure; Algorithms; Artificial Intelligence; Dermatoglyphics; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Skin; Subtraction Technique;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2008.188
Filename :
4586382
Link To Document :
بازگشت