Title :
Localization of autonomous underwater vehicles by floating acoustic buoys: a set-membership approach
Author :
Caiti, Andrea ; Garulli, Andrea ; Livide, Flavio ; Prattichizzo, Domenico
Author_Institution :
Dept. of Electr. Syst. Autom., Univ. of Pisa, Italy
Abstract :
This paper addresses localization of autonomous underwater vehicles (AUVs) from acoustic time-of-flight measurements received by a field of surface floating buoys. It is assumed that measurements are corrupted by unknown-but-bounded errors, with known bounds. The localization problem is tackled in a set-membership framework and an algorithm is presented, which produces as output the set of admissible AUV positions in a three-dimensional (3-D) space. The algorithm is tailored for a shallow water situation (water depth less than 500 m), and accounts for realistic variations of the sound speed profile in sea water. The approach is validated by simulations in which uncertainty models have been obtained from field data at sea. Localization performance of the algorithm are shown comparable with those previously reported in the literature by other approaches who assume knowledge of the statistics of measurement uncertainties. Moreover, guaranteed uncertainty regions associated to nominal position estimates are provided. The proposed algorithms can be used as a viable alternative to more traditional approaches in realistic at-sea conditions.
Keywords :
acoustic measurement; remotely operated vehicles; sonar; underwater vehicles; 3D space; acoustic time-of-flight measurements; autonomous robots; autonomous underwater vehicles; floating acoustic buoys; localization problem; measurement uncertainties; sea water; set-membership approach; shallow water; sound speed profile; Acoustic emission; Acoustic measurements; Marine vehicles; Mobile robots; Navigation; Remotely operated vehicles; Sea measurements; Transponders; Underwater acoustics; Underwater vehicles; Autonomous robots, localization, set-membership, underwater vehicles;
Journal_Title :
Oceanic Engineering, IEEE Journal of
DOI :
10.1109/JOE.2004.841432