Title :
Parameter estimation via the kalman filter
Author :
Aidala, Vincent J.
Author_Institution :
Naval Underwater Systems Center, Newport, RI, USA
fDate :
6/1/1977 12:00:00 AM
Abstract :
A method for parameter estimation is presented using the Kalman filter with appropriate initial conditions. The filter solution is shown to approximate the minimum-norm weighted least-squares solution to any desired accuracy during all phases of estimation. Furthermore, the computations are identical for each measurement, irrespective of whether a minimal observable data set has been established. This procedure contrasts with other techniques for parameter estimation that require additional computation when the process is unobservable.
Keywords :
Kalman filtering; Least-squares estimation; Parameter estimation; Differential equations; Filters; Parameter estimation; Phase estimation; State-space methods; Vectors; Velocity control; Writing;
Journal_Title :
Automatic Control, IEEE Transactions on
DOI :
10.1109/TAC.1977.1101518