Title :
A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
Author :
Hall, Lawrence O. ; Bensaid, Amine M. ; Clarke, Laurence P. ; Velthuizen, Robert P. ; Silbiger, Martin S. ; Bezdek, James C.
Author_Institution :
Univ. of South Florida, Tampa, FL, USA
fDate :
9/1/1992 12:00:00 AM
Abstract :
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared
Keywords :
biomedical NMR; brain; fuzzy set theory; image recognition; image segmentation; medical diagnostic computing; medical image processing; neural nets; approximate fuzzy c-means unsupervised clustering; brain; brain tumors; cerebrospinal fluid boundary; edema; image recognition; magnetic resonance image segmentation; medical diagnostic computing; multilayered perceptron; neural network; neurophysiology; Clustering algorithms; Computer networks; Fuzzy logic; Fuzzy neural networks; Fuzzy sets; Image segmentation; Intelligent networks; Magnetic resonance; Magnetic resonance imaging; Neural networks;
Journal_Title :
Neural Networks, IEEE Transactions on