DocumentCode :
824759
Title :
On bootstrap identification using stochastic approximation
Author :
Prasad, R.M. ; Sinha, A.K.
Author_Institution :
Indian Instituite of Technology, New Delhi, India
Volume :
22
Issue :
4
fYear :
1977
fDate :
8/1/1977 12:00:00 AM
Firstpage :
671
Lastpage :
672
Abstract :
A two-stage state and parameter estimation algorithm for linear systems has been developed. Stage 1 uses a stochastic approximation method for state estimation, while stage 2 considers parameter estimation through a linear Kalman filter. These two stages are coupled in a bootstrap manner. The algorithm is computationally much simpler than the usual extended Kalman filter. A fourth-order numerical example has been solved, and results have been compared with those obtained using an extended Kalman filter.
Keywords :
Kalman filtering; Linear systems, time-invariant discrete-time; Parameter identification; State estimation; Stochastic approximation; Approximation algorithms; Equations; Gaussian noise; Linear systems; Microcomputers; Parameter estimation; State estimation; Stochastic processes; Stochastic systems; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1977.1101579
Filename :
1101579
Link To Document :
بازگشت