DocumentCode :
825116
Title :
Novel Low-Complexity Estimators for the Shape Parameter of the Generalized Gaussian Distribution
Author :
Yunfei Chen ; Beaulieu, Norman C.
Author_Institution :
Sch. of Eng., Univ. of Warwick, Coventry
Volume :
58
Issue :
4
fYear :
2009
fDate :
5/1/2009 12:00:00 AM
Firstpage :
2067
Lastpage :
2071
Abstract :
Four new moment-based estimators are proposed for the shape parameter of the generalized Gaussian distribution. The new moment-based estimators have simple structures. They also outperform previous known moment-based estimators when the true value of the shape parameter is small. Simulation results show that in some cases, the estimation error in the proposed moment-based estimators is less than half of the error observed in current moment-based estimators.
Keywords :
Gaussian distribution; estimation theory; signal processing; estimation error; generalized Gaussian distribution; low-complexity estimators; moment-based estimators; shape parameter; signal processing; Generalized Gaussian distribution (GGD); moment method; shape parameter; ultrawide bandwidth (UWB);
fLanguage :
English
Journal_Title :
Vehicular Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9545
Type :
jour
DOI :
10.1109/TVT.2008.2003079
Filename :
4588342
Link To Document :
بازگشت