DocumentCode :
825225
Title :
Poisson intensity estimation for tomographic data using a wavelet shrinkage approach
Author :
Cavalier, Laurent ; Koo, Ja-Yong
Author_Institution :
Centre de Mathematiques et Informatique, Univ. Aix-Marseille, Marseille, France
Volume :
48
Issue :
10
fYear :
2002
fDate :
10/1/2002 12:00:00 AM
Firstpage :
2794
Lastpage :
2802
Abstract :
We consider a two-dimensional (2-D) problem of positron-emission tomography (PET) where the random mechanism of the generation of the tomographic data is modeled by Poisson processes. The goal is to estimate the intensity function which corresponds to emission density. Using the wavelet-vaguelette decomposition (WVD), we propose an estimator based on thresholding of empirical vaguelette coefficients which attains the minimax rates of convergence on Besov function classes. Furthermore, we construct an adaptive estimator which attains the optimal rate of convergence up to a logarithmic term.
Keywords :
adaptive estimation; convergence of numerical methods; minimax techniques; nonlinear estimation; positron emission tomography; stochastic processes; wavelet transforms; 2D problem; Besov function classes; PET; Poisson intensity estimation; Poisson processes; adaptive estimator; emission density; empirical vaguelette coefficients thresholding; intensity function estimation; linear estimators; minimax convergence rate; nonlinear estimation; optimal convergence rate; positron-emission tomography; random mechanism; tomographic data; two-dimensional problem; wavelet shrinkage; wavelet-vaguelette decomposition; Computed tomography; Convergence; Inverse problems; Least squares methods; Maximum likelihood detection; Maximum likelihood estimation; Minimax techniques; Positron emission tomography; Statistics; Two dimensional displays;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2002.802632
Filename :
1035132
Link To Document :
بازگشت