DocumentCode :
827005
Title :
An algorithm for the calculation of transmission zeros of the system (C, A, B, D) using high gain output feedback
Author :
Davison, E.J. ; Wang, S.H.
Author_Institution :
University of Toronto, Toronto, Ontario, Canada
Volume :
23
Issue :
4
fYear :
1978
fDate :
8/1/1978 12:00:00 AM
Firstpage :
738
Lastpage :
741
Abstract :
A new algorithm, which is an extension of [1, algorithm II], is presented to determine the transmission zeros of the system \\dot{x}=Ax+Bu, y=Cx+Du denoted by (C,A,B,D) . The algorithm is based on the observation that for nondegenerate (C,A,B,D) systems, the set of transmission zeros of (C,A,B,D) are contained in the finite eigenvalues of the closed-loop system matrix {A + BK((I_{r}/p)-DK)^{-1}C} where K is any arbitrary matrix of full rank, y \\in R^{r} , and \\rho\\rightarrow\\infty . Some numerical examples of systems of 100th order are included to illustrate the algorithm.
Keywords :
Linear systems, time-invariant continuous-time; Output feedback; Poles and zeros; Asymptotic stability; Automatic control; Calibration; Control systems; Eigenvalues and eigenfunctions; Filtering theory; Output feedback; State estimation; Steady-state; Uncertainty;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1978.1101808
Filename :
1101808
Link To Document :
بازگشت