Title :
Efficient and robust feature extraction by maximum margin criterion
Author :
Li, Haifeng ; Jiang, Tao ; Zhang, Keshu
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of California, Riverside, CA, USA
Abstract :
In pattern recognition, feature extraction techniques are widely employed to reduce the dimensionality of data and to enhance the discriminatory information. Principal component analysis (PCA) and linear discriminant analysis (LDA) are the two most popular linear dimensionality reduction methods. However, PCA is not very effective for the extraction of the most discriminant features, and LDA is not stable due to the small sample size problem . In this paper, we propose some new (linear and nonlinear) feature extractors based on maximum margin criterion (MMC). Geometrically, feature extractors based on MMC maximize the (average) margin between classes after dimensionality reduction. It is shown that MMC can represent class separability better than PCA. As a connection to LDA, we may also derive LDA from MMC by incorporating some constraints. By using some other constraints, we establish a new linear feature extractor that does not suffer from the small sample size problem, which is known to cause serious stability problems for LDA. The kernelized (nonlinear) counterpart of this linear feature extractor is also established in the paper. Our extensive experiments demonstrate that the new feature extractors are effective, stable, and efficient.
Keywords :
feature extraction; principal component analysis; stability; linear discriminant analysis; maximum margin criterion; pattern recognition; principal component analysis; robust feature extraction; stability; Covariance matrix; Data mining; Degradation; Feature extraction; Linear discriminant analysis; Pattern recognition; Principal component analysis; Robustness; Stability; Vectors; Feature extraction; linear discriminant analysis (LDA); maximum margin criterion (MMC); small sample size problem; Algorithms; Face; Humans; Linear Models; Neural Networks (Computer); Nonlinear Dynamics; Pattern Recognition, Automated;
Journal_Title :
Neural Networks, IEEE Transactions on
DOI :
10.1109/TNN.2005.860852