DocumentCode :
827828
Title :
Greatest common divisor via generalized Sylvester and Bezout matrices
Author :
Bitmead, R.R. ; Kung, S.-Y. ; Anderson, B.D.O. ; Kailath, T.
Author_Institution :
University of Newcastle, New South Wales, Austrailia
Volume :
23
Issue :
6
fYear :
1978
fDate :
12/1/1978 12:00:00 AM
Firstpage :
1043
Lastpage :
1047
Abstract :
We present new methods for computing the greatest common right divisor of polynomial matrices. These methods involve the recently studied generalized Sylvester and generalized Bezoutian resultant matrices, which require no polynomial operations. They can provide a row proper greatest common right divisor, test for coprimeness and calculate dual dynamical indices. The generalized resultant matrices are developments of the scalar Sylvester and Bezoutian resultants and many of the familiar properties of these latter matrices are demonstrated to have analogs with the properties of the generalized resultant matrices for matrix polynomials.
Keywords :
Matrix factorization; Polynomial matrices; Automatic control; Control systems; Linear systems; MIMO; Optimal control; Poles and zeros; Polynomials; System testing;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1978.1101890
Filename :
1101890
Link To Document :
بازگشت