DocumentCode :
829886
Title :
Isometries for rank distance and permutation group of Gabidulin codes
Author :
Berger, Thierry P.
Author_Institution :
LACO, Limoges Univ., France
Volume :
49
Issue :
11
fYear :
2003
Firstpage :
3016
Lastpage :
3019
Abstract :
The rank distance was introduced by E.M. Gabidulin (see Probl. Pered. Inform., vol.21, p.1-12, 1985). He determined an upper bound for the minimum rank distance of a code. Moreover, he constructed a class of codes which meet this bound: the so-called Gabidulin codes. We first characterize the linear and semilinear isometries for the rank distance. Then we determine the isometry group and the permutation group of Gabidulin codes of any length. We give a characterization of equivalent Gabidulin codes. Finally, we prove that the number of equivalence classes of Gabidulin codes is exactly the number of equivalence classes of vector spaces of dimension n contained in GF(pm) under some particular relations.
Keywords :
Galois fields; codes; Gabidulin codes; Galois field; equivalence classes; finite field; linear isometry; permutation group; rank distance; semilinear isometry; vector spaces; Codes; Galois fields; Hamming distance; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.819322
Filename :
1246027
Link To Document :
بازگشت