DocumentCode :
830187
Title :
Identification of MIMO systems with partially decoupled parameters
Author :
Pearson, A.E. ; Chin, Y.K.
Author_Institution :
Brown University, Providence, RI, USA
Volume :
24
Issue :
4
fYear :
1979
fDate :
8/1/1979 12:00:00 AM
Firstpage :
599
Lastpage :
604
Abstract :
Physical models for multivariable systems generally exhibit a partial decoupling with respect to the parameters characterizing the system. The computational advantages of such decoupling are explored using a recently developed least squares-equation error technique which applies to a class of nonlinear differential systems with input-output data given over a fixed finite-time interval. It is shown how the partially decoupled parameterized differential operator equations can be used as a basis for formulating a finite sequence of lower dimensional function minimizations in lieu of a single high-dimensional parameter minimization problem. Simulation results are summarized for a helicopter example which illustrate the advantages of carrying out the finite sequence of lower dimensional function minimizations.
Keywords :
Helicopter control; Least-squares estimation; Multivariable systems; Parameter identification; Data mining; Differential equations; MIMO; Military computing; Nonlinear equations; Nonlinear systems; Parameter estimation; Partial differential equations; Polynomials; System identification;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1979.1102115
Filename :
1102115
Link To Document :
بازگشت