DocumentCode :
830979
Title :
The set of all minimal partial realizations
Author :
Zazworsky, Raymond M. ; Jensen, David ; Baker, William P.
Author_Institution :
United States Air Force Academy, Colorado Springs, CO, USA
Volume :
24
Issue :
6
fYear :
1979
fDate :
12/1/1979 12:00:00 AM
Firstpage :
966
Lastpage :
970
Abstract :
This paper is concerned with the uniqueness of minimal partial realizations. Earlier papers are typically concerned with the problem of the existence and the determination of a matrix triple (\\tilde{A},\\tilde{B},\\tilde{C}) which is a minimal partial realization of a sequence {Y_{1},...,Y_{m}} of Markov parameters. In this paper a parameterized realization (A(y),B, C) ( y is a parameter vector) is defined which characterizes the set of all minimal partial realizations of the sequence { Y_{1},. . . , Y_{m}} . An example is provided and the utility of the parameterization is discussed.
Keywords :
Linear time-invariant (LTI) systems; Minimal realizations; Automatic control; Control systems; Controllability; Eigenvalues and eigenfunctions; Indium tin oxide; Interconnected systems; Laboratories; Linear systems; Mathematics; Springs;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1979.1102194
Filename :
1102194
Link To Document :
بازگشت