DocumentCode :
833992
Title :
Bifurcations, catastrophes, and optimal control
Author :
Casti, John L.
Author_Institution :
Princeton University, Princeton, NJ, USA
Volume :
25
Issue :
5
fYear :
1980
fDate :
10/1/1980 12:00:00 AM
Firstpage :
1008
Lastpage :
1011
Abstract :
An approach to the problem of determining bifurcation-free optimal control laws is presented using the theory of catastrophes. Under the assumption that the linearized system dynamics in the neighborhood of the equilibrium are of gradient type, conditions are given to ensure that a linear feedback law simultaneously minimize a quadratic objective and generate a bifurcation-free trajectory. Explicit results are presented for the case of two system inputs (the cusp catastrophe). Extensions to the case of nongradient dynamics and/or nonquadratic costs are also discussed.
Keywords :
Nonlinear systems, continuous-time; Optimal control; Singular optimal control; Bifurcation; Control systems; Employment; Feedback; Jacobian matrices; Modems; Nonlinear control systems; Nonlinear dynamical systems; Optimal control; Stability;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1980.1102486
Filename :
1102486
Link To Document :
بازگشت