• DocumentCode
    834294
  • Title

    Asymptotic convergence properties of the extended Kalman filter using filtered state estimates

  • Author

    Ursin, Bjorn

  • Author_Institution
    SINTEF, Trondheim-NTH, Norway
  • Volume
    25
  • Issue
    6
  • fYear
    1980
  • fDate
    12/1/1980 12:00:00 AM
  • Firstpage
    1207
  • Lastpage
    1211
  • Abstract
    In a recent paper, Ljung has given a convergence analysis of the extended Kalman filter (EKF) as a parameter estimator for linear systems. The analysis is done for a version of the EKF using predicted values of the state vector. In this note a similar convergence analysis is done for the EKF using filtered values of the state vector. The convergence properties of the two algorithms are similar, but not identical. The recalculation of a simple example given by Ljung indicates that using the filtered estimate of the state vector gives improved convergence properties of the algorithm.
  • Keywords
    Kalman filtering; Linear systems, stochastic discrete-time; Parameter estimation; Algorithm design and analysis; Convergence; Equations; Error compensation; Feedback; Filtering; Nonlinear filters; State estimation; Vectors; Weight measurement;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1980.1102518
  • Filename
    1102518