• DocumentCode
    83552
  • Title

    Coupled-least-squares identification for multivariable systems

  • Author

    Feng Ding

  • Author_Institution
    Key Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
  • Volume
    7
  • Issue
    1
  • fYear
    2013
  • fDate
    Jan. 3 2013
  • Firstpage
    68
  • Lastpage
    79
  • Abstract
    This article studies identification problems of multiple linear regression models, which may be described a class of multi-input multi-output systems (i.e. multivariable systems). Based on the coupling identification concept, a novel coupled-least-squares (C-LS) parameter identification algorithm is introduced for the purpose of avoiding the matrix inversion in the multivariable recursive least-squares (RLS) algorithm for estimating the parameters of the multiple linear regression models. The analysis indicates that the C-LS algorithm does not involve the matrix inversion and requires less computationally efforts than the multivariable RLS algorithm, and that the parameter estimates given by the C-LS algorithm converge to their true values. Simulation results confirm the presented convergence theorems.
  • Keywords
    MIMO systems; convergence; least squares approximations; parameter estimation; recursive estimation; regression analysis; C-LS algorithm; convergence theorems; coupled-least-squares parameter identification algorithm; identification problems; multiinput multioutput systems; multiple linear regression models; multivariable RLS algorithm; multivariable recursive least-squares algorithm; multivariable systems; parameter estimation;
  • fLanguage
    English
  • Journal_Title
    Control Theory & Applications, IET
  • Publisher
    iet
  • ISSN
    1751-8644
  • Type

    jour

  • DOI
    10.1049/iet-cta.2012.0171
  • Filename
    6475379