DocumentCode :
837913
Title :
Locations of zeros of predictor Polynomials
Author :
Cybenko, George
Author_Institution :
Tufts University, Medford, MA, USA
Volume :
27
Issue :
1
fYear :
1982
fDate :
2/1/1982 12:00:00 AM
Firstpage :
235
Lastpage :
237
Abstract :
This work shows that the zeros of the predictor polynomial determined by a finite-data least-squares linear prediction problem lie inside an irregular polygon contained in the unit circle of the complex plane. The polygon is independent of the data, only depending on the length of the data and the order of the predictor. The results are an analytic statement of the resolution limitations of spectral estimates based on finite-data least-squares linear predictors.
Keywords :
Linear prediction; Poles and zeros; Density measurement; Discrete Fourier transforms; Equations; Filters; Mathematics; Matrix decomposition; Measurement units; Polynomials; Stability; State estimation;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1982.1102870
Filename :
1102870
Link To Document :
بازگشت