DocumentCode :
838966
Title :
Multi-output regression using a locally regularised orthogonal least-squares algorithm
Author :
Chen, S.
Author_Institution :
Dept. of Electron. & Comput. Sci., Southampton Univ., UK
Volume :
149
Issue :
4
fYear :
2002
fDate :
8/1/2002 12:00:00 AM
Firstpage :
185
Lastpage :
195
Abstract :
The paper considers data modelling using multi-output regression models. A locally regularised orthogonal least-squares (LROLS) algorithm is proposed for constructing sparse multi-output regression models that generalise well. By associating each regressor in the regression model with an individual regularisation parameter, the ability of the multi-output orthogonal least-squares (OLS) model selection to produce a parsimonious model with a good generalisation performance is greatly enhanced
Keywords :
least squares approximations; modelling; nonlinear systems; statistical analysis; time series; LROLS algorithm; data modelling; locally regularised orthogonal least-squares algorithm; multi-output regression models; nonlinear system modelling; parsimonious model; sparse multi-output regression models;
fLanguage :
English
Journal_Title :
Vision, Image and Signal Processing, IEE Proceedings -
Publisher :
iet
ISSN :
1350-245X
Type :
jour
DOI :
10.1049/ip-vis:20020401
Filename :
1040132
Link To Document :
بازگشت