DocumentCode :
839295
Title :
Structure at inifinity of linear multivariable systems: A geometric approach
Author :
Commault, C. ; Dion, J.M.
Author_Institution :
Laboratoire d´´Automatique de Grenoble, Institut National Polytechnique, Grenoble, France
Volume :
27
Issue :
3
fYear :
1982
fDate :
6/1/1982 12:00:00 AM
Firstpage :
693
Lastpage :
696
Abstract :
The infinite zero structure of linear multivariable systems is investigated via the geometric approach. The basic tools used are the new concepts of almost ( A, B )-invariant and almost controllability subspaces. These concepts permit advantageous geometric interpretation of infinite zeros. This interpretation is a natural generalization of the finite case. Connection is made with the Smith-McMillan structure at infinity of the transfer matrix.
Keywords :
Multivariable systems; Poles and zeros, linear systems; Control system synthesis; Control systems; Eigenvalues and eigenfunctions; H infinity control; MIMO; Optimal control; Polynomials; State feedback; State-space methods; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1982.1102999
Filename :
1102999
Link To Document :
بازگشت