DocumentCode :
839801
Title :
A test for root-clustering transformability
Author :
Gutman, Shaul
Author_Institution :
University of California, Berkeley, CA, USA
Volume :
27
Issue :
4
fYear :
1982
fDate :
8/1/1982 12:00:00 AM
Firstpage :
979
Lastpage :
981
Abstract :
Consider the problem of root clustering: given a square matrix A with spectrum \\sigma (A) , for what region S in the complex plane is it possible to state a criterion (necessary and sufficient conditions) so that \\sigma (A) \\in S ? Recently it has been shown that one subclass Ω of S satisfies a certain transformability condition. In this note we test transformability via polynomial global nonnegativity.
Keywords :
Matrices; Poles and zeros; Differential equations; Geometry; Linear matrix inequalities; Mechanical engineering; Nonlinear equations; Polynomials; Region 5; Riccati equations; Sufficient conditions; Testing;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1982.1103044
Filename :
1103044
Link To Document :
بازگشت