Title :
k-Anonymity in the Presence of External Databases
Author :
Sacharidis, Dimitris ; Mouratidis, Kyriakos ; Papadias, Dimitris
Author_Institution :
Inst. for the Manage. of Inf. Syst., Athena Res. Center, Athens, Greece
fDate :
3/1/2010 12:00:00 AM
Abstract :
The concept of k-anonymity has received considerable attention due to the need of several organizations to release microdata without revealing the identity of individuals. Although all previous k-anonymity techniques assume the existence of a public database (PD) that can be used to breach privacy, none utilizes PD during the anonymization process. Specifically, existing generalization algorithms create anonymous tables using only the microdata table (MT) to be published, independently of the external knowledge available. This omission leads to high information loss. Motivated by this observation, we first introduce the concept of k-join-anonymity (KJA), which permits more effective generalization to reduce the information loss. Briefly, KJA anonymizes a superset of MT, which includes selected records from PD. We propose two methodologies for adapting k-anonymity algorithms to their KJA counterparts. The first generalizes the combination of MT and PD, under the constraint that each group should contain at least 1 tuple of MT (otherwise, the group is useless and discarded). The second anonymizes MT, and then, refines the resulting groups using PD. Finally, we evaluate the effectiveness of our contributions with an extensive experimental evaluation using real and synthetic data sets.
Keywords :
data privacy; database management systems; security of data; anonymization process; external databases; k-join-anonymity; microdata table; public database; Privacy; k-anonymity.;
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
DOI :
10.1109/TKDE.2009.120