DocumentCode :
840789
Title :
Global transformations of nonlinear systems
Author :
Hunt, L.R. ; Su, Renjeng ; Meyer, George
Author_Institution :
Texas Tech University, Lubbock, TX, USA
Volume :
28
Issue :
1
fYear :
1983
fDate :
1/1/1983 12:00:00 AM
Firstpage :
24
Lastpage :
31
Abstract :
Recent results have established necessary and sufficient conditions for a nonlinear system of the form \\dot{x}(t) = f(x(t))-u(t)g(x(t)) . with f(0) = 0 , to be locally equivalent in a neighborhood of the origin in Rnto a controllable linear system. We combine these results with several versions of the global inverse function theorem to prove sufficient conditions for the transformation of a nonlinear system to a linear system. In doing so we introduce a technique for constructing a transformation under the assumptions that \\{g.[f.g],\\cdots ,(ad^{n-1}f.g)\\ span an n -dimensional space and that \\{g.[f.g],\\cdots ,(ad^{n-2}f.g)\\ is an involutive set.
Keywords :
Nonlinear systems; Aerospace control; Ear; Feedback; Jacobian matrices; Linear systems; NASA; Nonlinear systems; Partial differential equations; Stability; Sufficient conditions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1983.1103137
Filename :
1103137
Link To Document :
بازگشت