DocumentCode :
841264
Title :
On the structure at infinity of linear block-decouplable systems: The general case
Author :
Descusse, J. ; Lafay, J.F. ; Malabre, M.
Author_Institution :
Equipe de Recherche Associee au C.N.R.S., Nantes Cedex, France
Volume :
28
Issue :
12
fYear :
1983
fDate :
12/1/1983 12:00:00 AM
Firstpage :
1115
Lastpage :
1118
Abstract :
The aim of this note is to show that a linear system ( C, A, B ) is block-decouplable by means of static state feedback laws ( F, G ) with G invertible if and only if the infinite structure of ( C, A, B ) equals the union of the infinite structures of the subsystems ( C_{i}, A, B ) extracted from the given output partition. This result generalizes the ones recently obtained for Morgan\´s problem [6] and for the particular cases of right-invertible [7] or left-invertibie [8] systems.
Keywords :
Decoupling of systems, linear; State-feedback, linear systems; Equations; H infinity control; State feedback; Sufficient conditions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1983.1103187
Filename :
1103187
Link To Document :
بازگشت