DocumentCode :
842980
Title :
Recursive input-output and state-space solutions for continuous-time linear estimation problems
Author :
Kailath, T. ; Ljung, L. ; Morf, M.
Author_Institution :
Stanford University, Stanford, CA, USA
Volume :
28
Issue :
9
fYear :
1983
fDate :
9/1/1983 12:00:00 AM
Firstpage :
897
Lastpage :
906
Abstract :
A general linear least-squares estimation problem is considered. It is shown how the optimal filters for filtering and smoothing can be recursively and efficiently calculated under certain structural assumptions about the covariance functions involved. This structure is related to an index known as the displacement rank, which is a measure of non-Toeplitzness of a covariance kernel. When a state space type structure is added, it is shown how the Chandrasekhar equations for determining the gain of the Kalman-Bucy filter can be derived directly from the covariance function information; thus we are able to imbed this class of state-space problems into a general input-output framework.
Keywords :
Chandrasekhar equations; Integral equations; Kalman filtering, linear systems; Least-squares methods; Recursive estimation; Smoothing methods; Displacement measurement; Filtering; Filters; Geophysics computing; Kernel; Recursive estimation; Riccati equations; Smoothing methods; State estimation; State-space methods;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1983.1103352
Filename :
1103352
Link To Document :
بازگشت