DocumentCode :
843053
Title :
A constrained optimal control problem
Author :
Olivier, Philip D.
Author_Institution :
Louisiana State University, Baton Rouge, LA, USA
Volume :
29
Issue :
1
fYear :
1984
fDate :
1/1/1984 12:00:00 AM
Firstpage :
53
Lastpage :
54
Abstract :
In this note the problem of optimizing a standard quadratic cost functional subject to a hard constraint is solved (i.e., the poles of the resulting system must lie in a specified region of the left-half s -plane). This can he viewed as a generalization of the problem of finding the optimal controller that yields a system with specified relative stability. The problem is phrased in terms of a design procedure using coprime fractional representations.
Keywords :
Linear-quadratic control; Constraint optimization; Control systems; Cost function; Equations; Error correction; Feedback; Optimal control; Poles and zeros; Stability; Transfer functions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1984.1103359
Filename :
1103359
Link To Document :
بازگشت