DocumentCode :
843524
Title :
Stability of an exponentially stabilizable system
Author :
Levan, N.
Author_Institution :
University of California, Los Angeles, CA, USA
Volume :
29
Issue :
10
fYear :
1984
fDate :
10/1/1984 12:00:00 AM
Firstpage :
939
Lastpage :
941
Abstract :
Let A be the generator of a C0semigroup T(t), t \\geq 0 , and denote by S(t), t \\geq 0 , the semigroup generated by A - K , where K is a bounded linear operator on a Hilbert space. In this note we find necessary and sufficient conditions for the original semigroup T(t), t \\geq 0 , to be exponentially stable, given that the "feedback" semigroup S(t), t \\geq 0 , is exponentially stable. Applications to feedback stabilization via a steady-state Riccati equation will then be made.
Keywords :
Stability, linear systems; Feedback control; Hilbert space; Milling machines; Riccati equations; Stability; State feedback; Steady-state; Sufficient conditions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1984.1103403
Filename :
1103403
Link To Document :
بازگشت