Author_Institution :
Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea
Abstract :
An energy-efficient gait planning (EEGP) and control system is established for biped robots with three-mass inverted pendulum mode (3MIPM), which utilizes both vertical body motion (VBM) and allowable zero-moment-point (ZMP) region (AZR). Given a distance to be traveled, we newly designed an online gait synthesis algorithm to construct a complete walking cycle, i.e., a starting step, multiple cyclic steps, and a stopping step, in which: 1) ZMP was fully manipulated within AZR; and 2) vertical body movement was allowed to relieve knee bending. Moreover, gait parameter optimization is effectively performed to determine the optimal set of gait parameters, i.e., average body height and amplitude of VBM, number of steps, and average walking speed, which minimizes energy consumption of actuation motors for leg joints under practical constraints, i.e., geometrical constraints, friction force limit, and yawing moment limit. Various simulations were conducted to identify the effectiveness of the proposed method and verify energy-saving performance for various ZMP regions. Our control system was implemented and tested on the humanoid robot DARwIn-OP.
Keywords :
energy conservation; gait analysis; humanoid robots; legged locomotion; nonlinear control systems; path planning; pendulums; 3MIPM; AZR; EEGP; VBM; actuation motors; allowable ZMP region; allowable zero-moment-point region; biped robots; control system; energy consumption; energy-efficient gait planning; energy-saving performance; friction force limit; gait parameter optimization; geometrical constraints; humanoid robot DARwIn-OP; knee bending; leg joints; online gait synthesis algorithm; three-mass inverted pendulum mode; vertical body motion; walking cycle; yawing moment limit; Digital signal processing; Foot; Joints; Legged locomotion; Planning; Trajectory; Allowable zero-moment-point (ZMP) region; Biped robot; ZMP; Zero-Moment-Point; allowable ZMP region; biped robot; energy-efficient gait planning; energy-efficient gait planning (EEGP); vertical body motion; vertical body motion (VBM);