DocumentCode :
845578
Title :
Reciprocity, discretization, and the numerical solution of direct and inverse electromagnetic radiation and scattering problems
Author :
De Hoop, Adrianus Teunis
Author_Institution :
Lab. of Electromagn. Res., Delft Univ. of Technol., Netherlands
Volume :
79
Issue :
10
fYear :
1991
fDate :
10/1/1991 12:00:00 AM
Firstpage :
1421
Lastpage :
1430
Abstract :
The author gives a formulation, based on Lorentz reciprocity, that unifies the finite element method (FEM) and the integral equation models. Wave propagation and scattering problems in electromagnetics have to be addressed with the aid of numerical techniques. Many of these methods can be envisaged as being discretized versions of appropriate weak formulations of the pertinent operator (differential or integral) equations. For the relevant problems as formulated in the time Laplace-transform domain it is shown that the Lorentz reciprocity theorem encompasses all known weak formulations, while its discretization leads to the discretized forms of the corresponding operator equations, in particular to their finite-element and integral-equation modeling schemes. Both direct (forward) and inverse problems are discussed
Keywords :
Laplace transforms; electromagnetic wave propagation; electromagnetic wave scattering; finite element analysis; integral equations; inverse problems; Lorentz reciprocity; differential equations; direct EM radiation; discretization; finite element method; forward problems; integral equation models; inverse electromagnetic radiation; numerical solution; numerical techniques; operator equations; scattering problems; time Laplace-transform domain; wave propagation; weak formulations; Differential equations; Electromagnetic analysis; Electromagnetic fields; Electromagnetic propagation; Electromagnetic radiation; Electromagnetic scattering; Finite element methods; Integral equations; Inverse problems; Laplace equations;
fLanguage :
English
Journal_Title :
Proceedings of the IEEE
Publisher :
ieee
ISSN :
0018-9219
Type :
jour
DOI :
10.1109/5.104217
Filename :
104217
Link To Document :
بازگشت