DocumentCode :
847202
Title :
A Device-Level Vacuum-Packaging Scheme for Microbolometers on Rigid and Flexible Substrates
Author :
Mahmood, Aamer ; Butler, Donald P. ; Celik-Butler, Zeynep
Author_Institution :
Purdue Univ., West Lafayette
Volume :
7
Issue :
7
fYear :
2007
fDate :
7/1/2007 12:00:00 AM
Firstpage :
1012
Lastpage :
1019
Abstract :
This paper reports on the design, fabrication, and characterization of device-level vacuum-packaged microbolometers on rigid Si wafers and flexible polyimide substrates. Semiconducting yttrium barium copper oxide (commonly referred to as YBCO) serves as the bolometric material. Operating micromachined bolometers in vacuum reduces the thermal conductance Gth from the detector to the substrate. If flexibility of the substrate is not to be sacrificed, then the vacuum packaging needs to be done at the device level. Here, the microbolometers are fabricated on a silicon nitride support membrane, isolated from the substrate using surface micromachining. Suitable materials as well as various dimensions in the vacuum cavity are determined using finite-element method (FEM)-based CoventorWARE. A vacuum cavity made of Al2O3 has been designed. The thermal conductance Gth of bolometers with the geometry implemented in this work is the same for devices on rigid and flexible substrates. The theoretical value of Gth was calculated to be 4.0 x 10-6 W/K for devices operating in vacuum and 1.4 x 10-4 W/K for devices operating at atmospheric pressure. Device-level vacuum-packaged microbolometers on both rigid Si and flexible polyimide substrates have been fabricated and characterized for optical and electrical properties. A low thermal conductance of 1.1 X 10-6 W/K has been measured six months after fabrication, which implies an intact vacuum cavity.
Keywords :
bolometers; elemental semiconductors; finite element analysis; flexible electronics; micromachining; microsensors; semiconductor device packaging; silicon; Al2O3; CoventorWARE; FEM; Si; Si wafers; YBCO; bolometric material; device-level vacuum-packaging scheme; finite-element method; flexible substrates; microbolometers; polyimide substrates; rigid substrates; semiconducting yttrium barium copper oxide; silicon nitride; surface micromachining; thermal conductance; Bolometers; Conducting materials; Detectors; Fabrication; Polyimides; Semiconductivity; Semiconductor materials; Substrates; Thermal conductivity; Yttrium barium copper oxide; Bolometer; flexible substrates; packaging; smart skin;
fLanguage :
English
Journal_Title :
Sensors Journal, IEEE
Publisher :
ieee
ISSN :
1530-437X
Type :
jour
DOI :
10.1109/JSEN.2007.896560
Filename :
4200743
Link To Document :
بازگشت