• DocumentCode
    847223
  • Title

    Analytic variations on redundancy rates of renewal processes

  • Author

    Flajolet, Philippe ; Szpankowski, Wojciech

  • Author_Institution
    Algorithms Project, Inst. Nat. de Recherche en Inf. et Autom., Le Chesnay, France
  • Volume
    48
  • Issue
    11
  • fYear
    2002
  • fDate
    11/1/2002 12:00:00 AM
  • Firstpage
    2911
  • Lastpage
    2921
  • Abstract
    Csiszar and Shields (1996) proved that the minimax redundancy for a class of (stationary) renewal processes is Θ(√n) where n is the block length. This interesting result provides a nontrivial bound on redundancy for a nonparametric family of processes. The present paper gives a precise estimate of the redundancy rate for such (nonstationary) renewal sources, namely, 2/(log2)√((π2/6-1)n)+O(log n). This asymptotic expansion is derived by complex-analytic methods that include generating function representations, Mellin transforms, singularity analysis. and saddle-point estimates. This work places itself within the framework of analytic information theory
  • Keywords
    minimax techniques; redundancy; source coding; Mellin transforms; analytic information theory; analytic variations; asymptotic expansion; generating function representations; minimax redundancy; nonparametric processes; nontrivial bound; redundancy rate; redundancy rates; renewal processes; saddle-point estimates; singularity analysis; universal coding; Binary sequences; Codes; Computer science; Contracts; Decoding; Fluctuations; Information analysis; Information theory; Minimax techniques; Random variables;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2002.804115
  • Filename
    1042312