• DocumentCode
    851267
  • Title

    On indecomposable Abelian codes and their vertices

  • Author

    Zimmermann, KarlHeinz

  • Author_Institution
    Math. Inst., Bayreuth Univ., Germany
  • Volume
    37
  • Issue
    6
  • fYear
    1991
  • fDate
    11/1/1991 12:00:00 AM
  • Firstpage
    1723
  • Lastpage
    1731
  • Abstract
    Indecomposable nonsemisimple Abelian codes are investigated. The author describes all indecomposable Abelian group codes and shows that the minimal distance of such a code M is the product of the minimal distance of a semisimple Abelian group code and the minimal distance of the source module of M. It is illustrated that the minimal distance of every indecomposable Abelian code depends upon its associated vertex
  • Keywords
    codes; group theory; associated vertex; group codes; indecomposable Abelian codes; minimal distance; nonsemisimple Abelian codes; Adders; Algebra; Galois fields; Linear code; Product codes;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.104341
  • Filename
    104341