DocumentCode :
851267
Title :
On indecomposable Abelian codes and their vertices
Author :
Zimmermann, KarlHeinz
Author_Institution :
Math. Inst., Bayreuth Univ., Germany
Volume :
37
Issue :
6
fYear :
1991
fDate :
11/1/1991 12:00:00 AM
Firstpage :
1723
Lastpage :
1731
Abstract :
Indecomposable nonsemisimple Abelian codes are investigated. The author describes all indecomposable Abelian group codes and shows that the minimal distance of such a code M is the product of the minimal distance of a semisimple Abelian group code and the minimal distance of the source module of M. It is illustrated that the minimal distance of every indecomposable Abelian code depends upon its associated vertex
Keywords :
codes; group theory; associated vertex; group codes; indecomposable Abelian codes; minimal distance; nonsemisimple Abelian codes; Adders; Algebra; Galois fields; Linear code; Product codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.104341
Filename :
104341
Link To Document :
بازگشت