DocumentCode :
85223
Title :
Sparse Reconstruction Using Distribution Agnostic Bayesian Matching Pursuit
Author :
Masood, Mudassir ; Al-Naffouri, Tareq Y.
Author_Institution :
Dept. of Electr. Eng., King Abdullah Univ. of Sci. & Technol., Thuwal, Saudi Arabia
Volume :
61
Issue :
21
fYear :
2013
fDate :
Nov.1, 2013
Firstpage :
5298
Lastpage :
5309
Abstract :
A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery. This method performs Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or unknown. It is agnostic on signal statistics and utilizes a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data if not available. The method utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean-square error (MMSE) estimate of the sparse signal. Simulation results demonstrate the power and robustness of our proposed estimator.
Keywords :
belief networks; greedy algorithms; mean square error methods; signal reconstruction; additive noise; approximate minimum mean-square error estimate; distribution agnostic Bayesian matching pursuit; fast matching pursuit method; greedy approach; order-recursive updates; signal statistics; sparse reconstruction; sparse signal recovery; Bayes methods; Estimation; Greedy algorithms; Matching pursuit algorithms; Noise; Robustness; Vectors; Basis selection; Bayesian; compressed sensing; greedy algorithm; linear regression; matching pursuit; minimum mean-square error (MMSE) estimate; sparse reconstruction;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2013.2278814
Filename :
6581876
Link To Document :
بازگشت