Title :
New Generic Model of DFG-Based Wind Turbines for RMS-Type Simulation
Author :
Fortmann, Jens ; Engelhardt, S. ; Kretschmann, J. ; Feltes, C. ; Erlich, Istvan
Author_Institution :
REpower Syst. AG, Osterronfeld, Germany
Abstract :
New requirements for the validation of simulation models based on measurements in many grid codes show that existing generic approaches for generator and converter models of doubly fed generator systems (DFG) may not be accurate enough. The authors show that by applying a detailed analysis of the generator equations and the converter control design, a reduction of the model complexity is possible while maintaining a high level of accuracy. The generator model presented in this paper allows an improved representation of the stationary and dynamic response of wind turbines equipped with DFG systems especially during grid faults and during voltage recovery. The model is designed to represent modern DFG systems independently of vendor specific hardware and software. The results of simulations are compared to measurements of a voltage dip involving wind turbines. The generator model has been proposed as extension to the WECC/IEEE generator models and has been accepted as reference for IEC TC88 working group 27 (standard IEC 61400-27-1) on modeling and model validation of wind turbines.
Keywords :
IEC standards; dynamic response; electric generators; machine control; power grids; reduced order systems; wind turbines; DFG systems; IEC TC88 working group 27; RMS-type simulation; WECC-IEEE generator; converter control design; converter models; doubly fed generator systems; dynamic response; generator models; grid codes; grid faults; model complexity reduction; simulation models; standard IEC 61400-27-1; stationary response; voltage dip; voltage recovery; wind turbines; Equations; Generators; Mathematical model; Rotors; Stators; Transient analysis; Wind turbines; Control; IEC 61400-27; measurement; modeling; standards; wind energy;
Journal_Title :
Energy Conversion, IEEE Transactions on
DOI :
10.1109/TEC.2013.2287251