DocumentCode :
853613
Title :
The optimal projection equations for fixed-order, sampled-data dynamic compensation with computation delay
Author :
Bernstein, Dennis S. ; Davis, Lawrence D. ; Greeley, Scott W.
Author_Institution :
Harris Corporation, Melbourne, FL, USA
Volume :
31
Issue :
9
fYear :
1986
fDate :
9/1/1986 12:00:00 AM
Firstpage :
859
Lastpage :
862
Abstract :
For an LQG-type sampled-data regulator problem which accounts for computational delay and utilizes an averaging A/D device, the equivalent discrete-time problem is shown to be of increased order due to the inclusion of delayed measurement states. The optimal projection equations for reduced-order, discrete-time compensation are applied to the augmented problem to characterize low-order controllers. The design results are illustrated on a tenth-order flexible beam example.
Keywords :
Delay systems, linear; Discrete-time systems; Linear quadratic Gaussian (LQG) control; Aerodynamics; Control theory; Delay; Eigenvalues and eigenfunctions; Integral equations; Modems; Optimal control; Regulators; Timing; White noise;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1986.1104407
Filename :
1104407
Link To Document :
بازگشت