Title :
Parameter estimation in Bayesian high-resolution image reconstruction with multisensors
Author :
Molina, Rafael ; Vega, Miguel ; Abad, Javier ; Katsaggelos, Aggelos K.
Author_Institution :
Dept. de Ciencias de la Computacion e I.A., Univ. de Granada, Spain
Abstract :
We consider the estimation of the unknown parameters for the problem of reconstructing a high-resolution image from multiple undersampled, shifted, degraded frames with subpixel displacement errors. We derive mathematical expressions for the iterative calculation of the maximum likelihood estimate of the unknown parameters given the low resolution observed images. These iterative procedures require the manipulation of block-semi circulant (BSC) matrices, that is, block matrices with circulant blocks. We show how these BSC matrices can be easily manipulated in order to calculate the unknown parameters. Finally the proposed method is tested on real and synthetic images.
Keywords :
Bayes methods; image reconstruction; image resolution; iterative methods; matrix algebra; maximum likelihood estimation; sensor fusion; Bayesian high-resolution image reconstruction; Bayesian methods; block matrices; block-semi circulant matrices; circulant blocks; iterative calculation; maximum likelihood estimation; multiple frames; multisensors; parameter estimation; subpixel displacement errors; Bayesian methods; Charge-coupled image sensors; Degradation; Image reconstruction; Image resolution; Optical imaging; Parameter estimation; Pixel; Signal resolution; Signal to noise ratio;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2003.818117