DocumentCode :
855192
Title :
A connection between normalized coprime factorizations and linear quadratic regulator theory
Author :
Meyer, David G. ; Franklin, Gene F.
Author_Institution :
Stanford University, Stanford, CA, USA
Volume :
32
Issue :
3
fYear :
1987
fDate :
3/1/1987 12:00:00 AM
Firstpage :
227
Lastpage :
228
Abstract :
Given a transfer matrix described by a minimal state-space triple, a method is given for computing state-space realizations for the numerator and denominator of a normalized, stable, right coprime factorization for the transfer matrix. The method involves the solution of an algebraic Riccati equation. It allows the use of existing computational state-space algorithms in finding normalized stable right coprime factorizations, and avoids explicit calculations of spectral factors.
Keywords :
Linear-quadratic control; Matrix decomposition/factorization; Transfer function matrices; Argon; Eigenvalues and eigenfunctions; Feedback; Information systems; Regulators; Riccati equations; Robustness; Software; System analysis and design; Topology;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1987.1104569
Filename :
1104569
Link To Document :
بازگشت