Title :
Kalman filtering for matrix estimation
Author :
Choukroun, D. ; Weiss, H. ; Bar-Itzhack, I.Y. ; Oshman, Y.
Author_Institution :
Dept. of Mech. & Aerosp. Eng., UCLA, Los Angeles, CA, USA
Abstract :
A general discrete-time Kalman filter (KF) for state matrix estimation using matrix measurements is presented. The new algorithm evaluates the state matrix estimate and the estimation error covariance matrix in terms of the original system matrices. The proposed algorithm naturally fits systems which are most conveniently described by matrix process and measurement equations. Its formulation uses a compact notation for aiding both intuition and mathematical manipulation. It is a straightforward extension of the classical KF, and includes as special cases other matrix filters that were developed in the past. Beyond the analytical value of the matrix filter, it is shown through various examples arising in engineering problems that this filter can be computationally more efficient than its vectorized version.
Keywords :
Kalman filters; covariance matrices; discrete time filters; covariance matrix; discrete-time Kalman filter; estimation error; matrix filters; matrix measurements; state matrix estimation; Covariance matrix; Electronic mail; Equations; Estimation error; Filtering; Kalman filters; Matrix decomposition; Nonlinear filters; Space technology; State estimation;
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
DOI :
10.1109/TAES.2006.1603411