• DocumentCode
    855483
  • Title

    ARMA order estimation via matrix perturbation theory

  • Author

    Fuchs, Jean Jacques

  • Author_Institution
    IRISA Unierviste de Rennes I, Campus de Beaulieu, Rennes Cédex, France and CRECO CNRS Systemes Adaptatifs, France
  • Volume
    32
  • Issue
    4
  • fYear
    1987
  • fDate
    4/1/1987 12:00:00 AM
  • Firstpage
    358
  • Lastpage
    361
  • Abstract
    Using matrix perturbation theory, we obtain the statistical distribution of the smallest eigenvalue of the Hankel matrix built upon the estimated covariances, under the hypothesis that the corresponding exact Hankel matrix possesses one single zero eigenvalue. This allows us to develop and justify a new order determination scheme, whose performance appears similar to those based on likelihood maximization, but with a much lower computational complexity.
  • Keywords
    Autoregressive moving-average processes; Covariance matrices; Eigenvalues/eigenvectors; Hankel matrices; Perturbation methods; Automatic control; Control systems; Covariance matrix; Eigenvalues and eigenfunctions; Linear approximation; Matrix decomposition; Reduced order systems; Stochastic processes; Stochastic systems; Testing;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1987.1104597
  • Filename
    1104597