DocumentCode :
856162
Title :
The operational matrices of integration and differentiation for the Fourier sine-cosine and exponential series
Author :
Paraskevopoulos, P.N.
Author_Institution :
National Technical University of Athens, Zographou, Greece
Volume :
32
Issue :
7
fYear :
1987
fDate :
7/1/1987 12:00:00 AM
Firstpage :
648
Lastpage :
651
Abstract :
For the Fourier sine-cosine series basis vector \\varphi (t) and the Fourier exponential series basis vector \\psi(t) , a linear nonsingular transfor-marion T is determined such that \\psi(t) = T\\varphi (t) . This result is then used to show that the operational matrices of integration P and Q for \\varphi (t) and \\psi(t) , respectively, are related by the expression TP = QT . Analogous results are derived for the corresponding operational matrices of differentiation D and R . General expressions are derived for T,P,Q,D, and R .
Keywords :
Fourier series; Integration (mathematics); Matrices; Chebyshev approximation; Computer science; Genetic expression; Jacobian matrices; Optimal control; Sensitivity analysis; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1987.1104663
Filename :
1104663
Link To Document :
بازگشت