• DocumentCode
    856536
  • Title

    A matrix inequality associated with bounds on solutions of algebraic Riccati and Lyapunov equations

  • Author

    Saniuk, Joan M. ; Rhodes, Ian B.

  • Author_Institution
    University of California, Santa Barbara, CA
  • Volume
    32
  • Issue
    8
  • fYear
    1987
  • fDate
    8/1/1987 12:00:00 AM
  • Firstpage
    739
  • Lastpage
    740
  • Abstract
    A new proof is presented for the inequality, tr (XY) \\leq \\parallel X \\parallel_{2} \\cdot tr Y . This argument is valid under the condition that Y be real symmetric nonnegative definite; X may be any square matrix.
  • Keywords
    Algebraic Riccati equation (ARE); Eigenvalues/eigenvectors; Lyapunov matrix equations; Matrices; Riccati equations, algebraic; Actuators; Eigenvalues and eigenfunctions; Estimation theory; Face detection; Linear algebra; Linear matrix inequalities; Riccati equations; Stability; Symmetric matrices; Uncertainty;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1987.1104700
  • Filename
    1104700