Title :
Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers
Author :
Perantonis, Stavros J. ; Lisboa, Paulo J G
Author_Institution :
Dept. of Electr. Eng. & Electron., Liverpool Univ., UK
fDate :
3/1/1992 12:00:00 AM
Abstract :
The classification and recognition of two-dimensional patterns independently of their position, orientation, and size by using high-order networks are discussed. A method is introduced for reducing and controlling the number of weights of a third-order network used for invariant pattern recognition. The method leads to economical networks that exhibit high recognition rates for translated, rotated, and scaled, as well as locally distorted, patterns. The performance of these networks at recognizing types and handwritten numerals independently of their position, size, and orientation is compared with and found superior to the performance of a layered feedforward network to which image features extracted by the method of moments are presented as input
Keywords :
computerised pattern recognition; neural nets; handwritten numerals; high-order neural networks; layered feedforward network; moment classifiers; notation invariance; scale invariant pattern recognition; third-order network; translation invariance; two-dimensional patterns; types; Feature extraction; Handwriting recognition; Image recognition; Image resolution; Message-oriented middleware; Moment methods; Neural networks; Pattern recognition; Pixel; Size control;
Journal_Title :
Neural Networks, IEEE Transactions on