• DocumentCode
    85669
  • Title

    New prediction for extended targets with random matrices

  • Author

    Granstrom, Karl ; Orguner, U.

  • Author_Institution
    Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden
  • Volume
    50
  • Issue
    2
  • fYear
    2014
  • fDate
    Apr-14
  • Firstpage
    1577
  • Lastpage
    1589
  • Abstract
    This paper presents a new prediction update for extended targets whose extensions are modeled as random matrices. The prediction is based on several minimizations of the Kullback-Leibler divergence (KL-div) and allows for a kinematic state dependent transformation of the target extension. The results show that the extension prediction is a significant improvement over the previous work carried out on the topic.
  • Keywords
    matrix algebra; minimisation; object detection; prediction theory; random processes; Kullback-Leibler divergence minimization; extended target prediction; kinematic state dependent transformation; random matrices; Approximation methods; Bayes methods; Covariance matrices; Kinematics; MIMO radar; Time measurement;
  • fLanguage
    English
  • Journal_Title
    Aerospace and Electronic Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9251
  • Type

    jour

  • DOI
    10.1109/TAES.2014.120211
  • Filename
    6850178