DocumentCode :
859447
Title :
Voltage-Current Hysteretic Characteristics in ME/Nd0.7Ca 0.3MnO3 Thin Films With ME = Au, Pt, Ag, Cu
Author :
Hsu, Daniel ; Lin, J.G. ; Wu, W.F. ; Wu, C.T. ; Chen, C.H.
Author_Institution :
Dept. of Mech. Eng., Nat. Taiwan Univ., Taipei
Volume :
43
Issue :
6
fYear :
2007
fDate :
6/1/2007 12:00:00 AM
Firstpage :
3067
Lastpage :
3069
Abstract :
In this work, different metal electrodes (ME) are sputtered on the surface of Nd0.7Ca0.3MnO3 thin films. The behavior of current-voltage (I-V) characteristics of these films is investigated. Among different metal electrodes, Au yields the smallest electrical hysteresis loop, while Cu generates the largest one. According to our analysis on the work function of each ME material, the result of ME-dependent I-V hysteresis loop can not be simply explained by the Schottky barrier. We propose that the electronnegativity of each ME material also plays a crucial role for the oxygen diffusion at interface. In conclusion, this study provides useful information for understanding the origin of I-V hysteresis loop and the principle of resistance switching in CMR manganites
Keywords :
Schottky barriers; calcium compounds; colossal magnetoresistance; copper; electronegativity; gold; metal-insulator boundaries; neodymium compounds; platinum; silver; thin films; work function; Ag-Nd0.7Ca0.3MnO3; Au-Nd0.7Ca0.3MnO3; CMR manganites; Cu-Nd0.7Ca0.3MnO3; ME-dependent I-V hysteresis loop; Pt-Nd0.7Ca0.3MnO3; Schottky barrier; electrical hysteresis loop; electronegativity; oxygen diffusion; resistance switching; surface thin films; voltage-current hysteresis; work function; Colossal magnetoresistance; Electric resistance; Electrodes; Gold; Magnetic hysteresis; Neodymium; Nonvolatile memory; Schottky barriers; Switches; Voltage; Colossal magnetoresistance (CMR); hysteresis; resistance switching;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2007.892178
Filename :
4202770
Link To Document :
بازگشت