Title :
A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output
Author :
Hong-Tzer Yang ; Chao-Ming Huang ; Yann-Chang Huang ; Yi-Shiang Pai
Author_Institution :
Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan
Abstract :
To improve real-time control performance and reduce possible negative impacts of photovoltaic (PV) systems, an accurate forecasting of PV output is required, which is an important function in the operation of an energy management system (EMS) for distributed energy resources. In this paper, a weather-based hybrid method for 1-day ahead hourly forecasting of PV power output is presented. The proposed approach comprises classification, training, and forecasting stages. In the classification stage, the self-organizing map (SOM) and learning vector quantization (LVQ) networks are used to classify the collected historical data of PV power output. The training stage employs the support vector regression (SVR) to train the input/output data sets for temperature, probability of precipitation, and solar irradiance of defined similar hours. In the forecasting stage, the fuzzy inference method is used to select an adequate trained model for accurate forecast, according to the weather information collected from Taiwan Central Weather Bureau (TCWB). The proposed approach is applied to a practical PV power generation system. Numerical results show that the proposed approach achieves better prediction accuracy than the simple SVR and traditional ANN methods.
Keywords :
energy management systems; fuzzy reasoning; learning (artificial intelligence); pattern classification; photovoltaic power systems; power engineering computing; regression analysis; self-organising feature maps; support vector machines; vector quantisation; weather forecasting; 1-day ahead hourly forecasting; ANN methods; EMS; LVQ networks; PV power generation system; PV power output; SOM; SVR; classification stage; distributed energy resources; energy management system; fuzzy inference method; historical data collection classification; input-output data sets; learning vector quantization network; photovoltaic systems; precipitation probability; real-time control performance; self-organizing map; solar irradiance; support vector regression; training stage; weather information collection; weather-based hybrid method; Clouds; Forecasting; Meteorology; Power generation; Predictive models; Support vector machine classification; Training; Fuzzy inference; learning vector quantization (LVQ); photovoltaic (PV) output forecasting; self-organizing map (SOM); support vector regression (SVR);
Journal_Title :
Sustainable Energy, IEEE Transactions on
DOI :
10.1109/TSTE.2014.2313600