DocumentCode :
86156
Title :
A Robust SIFT Descriptor for Multispectral Images
Author :
Saleem, Somaila ; Sablatnig, Robert
Author_Institution :
Comput. Vision Lab., Vienna Univ. of Technol., Vienna, Austria
Volume :
21
Issue :
4
fYear :
2014
fDate :
Apr-14
Firstpage :
400
Lastpage :
403
Abstract :
This letter presents a novel method for the description of multispectral image keypoints. The method proposed is based on a modified SIFT algorithm. It uses normalized gradients as local image features for the description of keypoints in order to achieve robustness against non linear intensity changes between multispectral images. The experimental results show that the method proposed achieves a better matching performance and outperforms the SIFT algorithm.
Keywords :
Laplace transforms; image matching; Harris Laplace interest regions; local image features; multispectral image keypoints; nonlinear intensity change; normalized gradients; robust SIFT descriptor; Equations; Histograms; Indexes; Materials; Robustness; Signal processing algorithms; Visualization; Harris Laplace interest regions; image matching; multispectral images and SIFT;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2304073
Filename :
6730675
Link To Document :
بازگشت