Title : 
Antimonide semiconductor saturable absorber for passive mode locking of a 1.5-μm Er : Yb : glass laser at 10 GHz
         
        
            Author : 
Grange, R. ; Zeller, S. ; Haiml, M. ; Ostinelli, O. ; Gini, E. ; Schon, S. ; Keller, U.
         
        
            Author_Institution : 
Phys. Dept., ETH Zurich, Switzerland
         
        
        
        
        
            fDate : 
4/1/2006 12:00:00 AM
         
        
        
        
            Abstract : 
We demonstrate the first antimonide (AlGaAsSb) semiconductor saturable absorber mirror (SESAM) for stable passive mode locking of an Er : Yb : glass laser at 10 GHz and a center wavelength of 1535 nm generating 4.7-ps pulses. The nearly resonant SESAM is InP-based, grown by metal-organic vapor phase epitaxy and optimized for high pulse repetition rates. We fully characterized the linear and nonlinear optical parameters: The saturation fluence is 80 μJ/cm2, the modulation depth is 0.4% and the nonsaturable losses are 0.35%. A 1/e decay time of 95 ps is achieved after wet chemical etching of the 10-nm InP cap on top of the absorber.
         
        
            Keywords : 
III-V semiconductors; aluminium compounds; erbium; etching; gallium arsenide; gallium compounds; indium compounds; laser cavity resonators; laser mirrors; laser mode locking; optical glass; optical losses; optical modulation; optical pulse generation; optical saturable absorption; semiconductor devices; solid lasers; vapour phase epitaxial growth; ytterbium; 1.5 mum; 10 GHz; 10 nm; 1535 nm; 4.7 ps; 95 ps; AlGaAsSb-InP; Er:Yb:glass laser; InP cap; InP-based SESAM; SiO/sub 2/:Er,Yb; antimonide semiconductor saturable absorber; linear optical parameters; metal-organic vapor phase epitaxy; modulation depth; nonlinear optical parameters; nonsaturable losses; passive mode locking; picosecond pulse generation; saturation fluence; semiconductor saturable absorber mirror; stable mode locking; wet chemical etching; Epitaxial growth; Erbium; Glass; Laser mode locking; Laser stability; Mirrors; Optical pulse generation; Pulsed laser deposition; Resonance; Semiconductor lasers; High pulse repetition rates; mode-locked lasers; optical materials;
         
        
        
            Journal_Title : 
Photonics Technology Letters, IEEE
         
        
        
        
        
            DOI : 
10.1109/LPT.2006.871846