DocumentCode :
866158
Title :
Initialisation of the augmented Hopfield network for improved generator scheduling
Author :
Dillon, J.D. ; Walsh, M.P. ; O´Malley, M.J.
Author_Institution :
ESB Nat. Grid, Dublin, Ireland
Volume :
149
Issue :
5
fYear :
2002
fDate :
9/1/2002 12:00:00 AM
Firstpage :
593
Lastpage :
599
Abstract :
An artificial neural network algorithm for generator scheduling is proposed. The algorithm employs an infeasible Lagrangian dual maximum solution to initialise the neurons of an augmented Hopfield network. The proposed algorithm produces cheaper solutions when compared with Lagrangian relaxation or a randomly initialised augmented Hopfield network. The algorithm also has shorter convergence times than the augmented Hopfield network, but is not as fast to converge as Lagrangian relaxation.
Keywords :
Hopfield neural nets; control system analysis; control system synthesis; convergence of numerical methods; neurocontrollers; power generation control; power generation scheduling; Lagrangian relaxation; augmented Hopfield network; control design; convergence times; generator scheduling improvement; infeasible Lagrangian dual maximum solution; neurons initialisation;
fLanguage :
English
Journal_Title :
Generation, Transmission and Distribution, IEE Proceedings-
Publisher :
iet
ISSN :
1350-2360
Type :
jour
DOI :
10.1049/ip-gtd:20020460
Filename :
1047631
Link To Document :
بازگشت