DocumentCode :
866626
Title :
SARNA-Predict: Accuracy Improvement of RNA Secondary Structure Prediction Using Permutation-Based Simulated Annealing
Author :
Tsang, Herbert H. ; Wiese, Kay C.
Author_Institution :
Sch. of Comput. Sci., Simon Fraser Univ., Surrey, BC, Canada
Volume :
7
Issue :
4
fYear :
2010
Firstpage :
727
Lastpage :
740
Abstract :
Ribonucleic acid (RNA), a single-stranded linear molecule, is essential to all biological systems. Different regions of the same RNA strand will fold together via base pair interactions to make intricate secondary and tertiary structures that guide crucial homeostatic processes in living organisms. Since the structure of RNA molecules is the key to their function, algorithms for the prediction of RNA structure are of great value. In this article, we demonstrate the usefulness of SARNA-Predict, an RNA secondary structure prediction algorithm based on Simulated Annealing (SA). A performance evaluation of SARNA-Predict in terms of prediction accuracy is made via comparison with eight state-of-the-art RNA prediction algorithms: mfold, Pseudoknot(pknotsRE), NUPACK, pknotsRG-mfe, Sfold, HotKnots, ILM, and STAR. These algorithms are from three different classes: heuristic, dynamic programming, and statistical sampling techniques. An evaluation for the performance of SARNA-Predict in terms of prediction accuracy was verified with native structures. Experiments on 33 individual known structures from eleven RNA classes (tRNA, viral RNA, antigenomic HDV, telomerase RNA, tmRNA, rRNA, RNaseP, 5S rRNA, Group I intron 23S rRNA, Group I intron 16S rRNA, and 16S rRNA) were performed. The results presented in this paper demonstrate that SARNA-Predict can out-perform other state-of-the-art algorithms in terms of prediction accuracy. Furthermore, there is substantial improvement of prediction accuracy by incorporating a more sophisticated thermodynamic model (efn2).
Keywords :
biology computing; dynamic programming; heuristic programming; molecular biophysics; organic compounds; performance evaluation; sampling methods; simulated annealing; thermodynamics; RNA secondary structure prediction accuracy; SARNA-Predict; base pair interactions; dynamic programming; efn2; heuristic algorithm; homeostatic processes; performance evaluation; permutation-based simulated annealing; ribonucleic acid; single-stranded linear molecule; statistical sampling; thermodynamic model; Accuracy; Biological system modeling; Biological systems; Cost accounting; Dynamic programming; Prediction algorithms; Predictive models; RNA; Sampling methods; Simulated annealing; RNA Secondary Structure Prediction; RNA folding; RNA secondary structure prediction; Simulated Annealing; Thermodynamic Models; permutation; ribonucleic acid; simulated annealing.; Algorithms; Base Pairing; Computational Biology; Nucleic Acid Conformation; RNA; Sequence Analysis, RNA; Software;
fLanguage :
English
Journal_Title :
Computational Biology and Bioinformatics, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
1545-5963
Type :
jour
DOI :
10.1109/TCBB.2008.97
Filename :
4626944
Link To Document :
بازگشت